Supply Substitution vs Load Absorption

Gas TCMF 26th April 2006

nationalgrid

Introduction

- To calculate a Unit Cost Allowance (UCA) for a new System Entry Point requires a methodology to:
 - Maintain a Supply and Demand match including the new Entry Point

Allocate any identified costs between Entry and Exit

UCA Methodology

- Prevailing Route Costs:
 - Calculated from the additional investment required to support an increase in flow along each route
 - Disaggregated into Entry/Exit costs on average on a 50/50 basis
- For large New Entry points, modeling a corresponding increase in demand at a single Exit point might more than double local flows, and hence not be modeled accurately by Transcost

- Proposed "System Costs":
 - Calculated from the additional investment required to support a sustained increase in flow at an Entry point with balancing adjustments to other Entry and/or Exit points.
 - A cost is determined for the entry point by only considering those costs trigger by the entry point flow increase

Maintain Supply and Demand match

- For any steady-state hydraulic model to operate, it is necessary to achieve a system balance between Entry (supply) and Exit (demand) flows
- Prevailing methodology maintains a supply & demand balance by
 - Starting from a balanced central case
 - Considering route costs i.e. matched increase in Entry/Exit pairs
- Options identified by Ofgem for "System Costs" are:
 - Load (demand) Absorption
 - Supply Substitution, or
 - A Hybrid of both the above

Allocation of Costs to Entry & Offtake

- Once a system balance achieved, costs associated with additional assets required to maintain transmission capacity can be identified
- Costs need to be split between Entry & Offtake.
 Options identified by Ofgem are:
 - 50/50 Entry v Offtake split
 - 100% cost allocation to Entry
 - Cost allocation based on engineering judgement

Load Absorption

- Increase demand to match the higher supply level
- How?
 - Known load growth?
 - Scaling Firm demand?
 - All firm offtakes equally?
 - Consider Interruptible Offtake flows?
 - A proportion of all Interruptible offtakes modelled equally, or
 - Selected Interruptible offtakes modelled?

Load Absorption: Entry Exit Cost Split

- Offtake related reinforcement costs might be identified
- These could be removed by
 - Engineering judgement:
 - Feasible but a non-transparent process
 - 50:50 split:
 - Understates share of investment costs driven by incremental entry capacity for entry points at the extremities of the system due to the distributed offtake increase

Supply Substitution

- Decrease existing supply to allow for the higher supply level
- How?
 - Scaling supplies?
 - All supplies equally?
 - Selected supplies e.g. exclude those <50 miles from new SEP
 - Furthest ASEPs from the new Entry Point
 - Merit order reduce flows starting from the Entry Points furthest from the new Entry Point?
 - Storage
 - Interconnectors/LNG Importation
 - Beach

Supply Substitution : Entry Exit Cost Split

- Offtake related reinforcement costs would not be identified
 - 50:50 split:
 - Understates share of investment costs driven by incremental entry capacity for any entry point
 - 100% Entry
 - Consistent with a process where only Entry flows are changed

Hybrid Approach

A complex process could be defined based on

- Known load growth
- Interruptible loads
- Reduced use of storage & Interconnectors (high merit order supplies)

Hybrid: Entry Exit Cost Split

100% Entry

- Process could be designed to only generate entry costs
- Transparency?
- Offtake related reinforcement costs might be identified
- These could be removed by
 - Engineering judgement:
 - Feasible but a non-transparent process
 - 50:50 split:
 - Understates share of investment costs driven by incremental entry capacity for entry points at the extremities of the system due to the distributed offtake increase

Summary

- National Grid NTS View:
 - Supply Substitution should be used for UCA calculation
 - Use merit order and start with those furthest from the new Entry Point
 - 100% Entry Cost Allocation as only Entry flow increases are modelled
 - The 50/50 split used within the LRMC methodology remains appropriate
 - consistent with modelling of route costs where equal Entry and exit flow increases are considered

